OPEN PROBLEM SESSION
ECCO 2012

(1). (Federico Ardila) For a composition \(c = (c_1, \ldots, c_k) \) we are interested in the composition polynomial \(g_c(q) \), which can be given at least three definitions.

(a.) If we write \(t^{c-1} := t_1^{c_1-1} \cdots t_k^{c_k-1} \), where \(t = (t_1, \ldots, t_k) \), then

\[
g_c(q) := \int_1^q \int_q^{t_k} \cdots \int_q^{t_2} t^{c-1} dt_1 \cdots dt_k.
\]

(b.) Let \(\beta_i = c_1 + \cdots + c_i \) for \(i = 0, \ldots, k \). Let \(h(x) = a_0 + a_1 x + \cdots + a_k x^k \) be the polynomial of smallest degree that passes through the \(k+1 \) points \((\beta_i, q^{\beta_i})\) on the curve \(y = q^x \). Here the coefficients \(a_i \) are functions of \(q \). Then \(a_k = (-1)^k g_c(q) \).

(c.) It is the volume of a combinatorially defined polytope, as explained in [1].

Some examples are:
- \(g_{(1,1,1,1)}(q) = \frac{1}{24} (1 - q)^4 \).
- \(g_{(2,2,2,2)}(q) = \frac{1}{384} (1 - q)^4 (1 + q)^4 \).
- \(g_{(1,2,2)}(q) = \frac{1}{120} (1 - q)^3 (8 + 9q + 3q^2) \).
- \(g_{(2,2,1)}(q) = \frac{1}{120} (1 - q)^3 (3 + 9q + 8q^2) \).
- \(g_{(5,3)}(q) = \frac{1}{120} (1 - q)^2 (5 + 10q + 15q^2 + 12q^3 + 9q^4 + 6q^5 + 3q^6) \).

and it is a fact that

\[
g_c(q) = (1 - q)^k f_c(q)
\]

where \(f_c(q) \) is a polynomial with positive coefficients. [1, Theorem 6.5]

Questions:
(I) These polynomials originally arose as volumes of polytopes; why do they also appear in the polynomial interpolation of exponential functions?
(II) Are the coefficients of \(f_c(q) \) unimodal? Are they log-concave?
(III) After suitable rescaling, do the coefficients of \(f_c(q) \) count nice combinatorial objects?

(2). (Criel Merino) Let

\[
M_{r,d} := \{ \text{monomials over } z_1, z_2, \ldots, z_d \text{ of degree } \leq r \}.
\]

A set of monomials \(C_{r,d} \) of degree \(r \) over the variables \(z_1, z_2, \ldots, z_d \) is a covering set for \(M_{r-1,d} \) if any monomial in \(M_{r-1,d} \) is a divisor for some monomial in \(C_{r,d} \).

Now let

\[
f_{r,d} := \min \text{ size of a covering set for } M_{r-1,d}.
\]

Conjecture:
(I) \(f_{r,d} = \#(\text{aperiodic necklaces with } r \text{ black beads and } d - r \text{ white beads}) \).
(II) \(f_{r,d} = f_{d,r} \) [Remark that this is a consequence of the previous conjecture].
(3). (Bernd Sturmfels) Let \(F \) be a family of non-trivial subsets of \([n]\). The collection \(F \) defines a family \(C \) of affine hyperplane arrangements in \(\mathbb{R}^{n-1} \) as follows:

\[
C = \{ \sum_{i \in F} x_i = 0 \} \quad \text{for} \quad F \in \mathcal{F}
\]

Question: How many bounded regions does this family have? This may be intractable in general, but an answer for particular families \(F \) would be interesting.

Now, let \(P \) be a poset on \([n]\) and put

\[
\mathcal{L}[P] = \{ \text{linear extensions of } P \}.
\]

Question: Determine the kernel of the map

\[
\phi : \mathbb{R}[p_\pi | \pi \in \mathcal{L}[P]] \to \mathbb{R}(x_1, \ldots, x_n)
\]

where \(p_\pi \) is the probability of observing the permutation \(\pi \) in \(\mathcal{L}[P] \) and

\[
\phi(p_\pi) = \prod_{i=1}^{n} \frac{1}{x_{\pi(1)} + \cdots + x_{\pi(i)}}
\]

(4). (Nantel Bergeron) The space \(NC\text{Sym} \) is a subspace of \(k\langle\langle x_1, x_2, \ldots \rangle\rangle \). For \(n \) fixed the following questions are open:

(I) Is \(\langle NC\text{Sym}^+(n) \rangle \) finitely generated?

(II) Is the dimension of the vector space \(k\langle x_1, \ldots, x_n \rangle / \langle NC\text{Sym}^+(n) \rangle \) finite?

(III) What would be the representation theory of \(S_n \) on this quotient?

(IV) Same questions are unsolved for the space \(NC\text{QSym} \).

(5). (Mauricio Velasco) Let

\[
\mathcal{H}_d^n = \{ I \subseteq R = k[x_1, \ldots, x_n] \mid \dim_k(R/I) = d \}
\]

This is the Hilbert scheme on \(d \) points in affine \(n \)-space. Now let

\[
\varphi(d, n) := \sup_I \dim_k(\text{Hom}(I, R/I))
\]

Question: What is \(\varphi(3, n) \)?

(6.) (Alejandro Morales) We denote by \(\mathfrak{S}_n \) the group of permutations on \([n] = \{1, 2, \ldots, n\} \).

We write permutations as words \(w = w_1 w_2 \cdots w_n \) where \(w_i \) is the image of \(w \) at \(i \).

We also identify each permutation \(w \) with its permutation matrix, the \(n \times n \) 0-1 matrix with ones in positions \((i, w_i)\). We think of the 1s in a permutation matrix as \(n \) non-attacking rooks on \([n] \times [n] \). Given a subset \(B \) of \([n] \times [n] \) we look at rook placements \(C \) of \(n \) non-attacking rooks on \(B \).

Recall the notion of the strong Bruhat order \(\prec \) on the symmetric group \([2] \text{ Ch. 2}: \) if \(t_{ij} \) is the transposition that switches \(i \) and \(j \), we have as our basic relations that \(u \prec u \cdot t_{ij} \) in the strong Bruhat order when \(\text{inv}(u) + 1 = \text{inv}(u \cdot t_{ij}) \), and we extend by transitivity. Let \([w, w_0]\) denote the interval \(\{ u \mid u \succ w \} \) in the strong Bruhat order where \(w_0 \) is the largest element \(n \cdot n - 1 \ldots 21 \) of this order.
Example 1. If $w = 3412$, then the permutations in S_4 that succeed w in the Bruhat order are \{3412, 3421, 4312, 4321\}.

In [4], Sjöstrand gave necessary and sufficient conditions for $[w, w_0]$ to be equal to the set of rook placements of a skew shape associated to w. Namely, the left hull $H_L(w)$ of w is the smallest skew shape that covers w. Equivalently, $H_L(w)$ is the union over non-inversions (i, j) of w of the rectangles $(k, \ell) \mid w_i \leq k \leq w_j, i \leq \ell \leq j$. See Figure 1 for an example of the left hull of a permutation.

Theorem 2 ([4, Cor. 3.3]). The Bruhat interval $[w, w_0]$ in S_n equals the set of rook placements in the left hull $H_L(w)$ of w if and only if w avoids the patterns 1324, 24153, 31524, and 426153.

A natural family of diagrams is the collection of Rothe diagrams of permutations, which appear in the study of Schubert calculus. The Rothe diagram R_w of a permutation w is a subset of $\{1, 2, \ldots, n\} \times \{1, 2, \ldots, n\}$ whose cardinality is equal to the number of inversions of w; it is given by

$$R_w = \{(i, j) \mid 1 \leq i, j \leq n, \; w(i) > j, \; w^{-1}(j) > i\}.$$

See Figure 1 for some examples of Rothe diagrams. The following is a special case of two conjectures in [3, Sec. 6].

Conjecture 3 ([3]). Fix a permutation w in S_n. We have that the number of rook placements in the left hull $H_L(w)$ equals the number of rook placements in the Rothe diagram R_w if and only if w avoids the patterns 1324, 24153, 31524, and 426153.

References

