1. Antipode

Let H be a Hopf algebra and let S be its antipode.

(1). Show that

\[S(gh) = S(h)S(g) \]

for $g, h \in S$.

(2). Show that if H is commutative or cocommutative, then $S^2 = I_H$.

(3). Let $F = \text{Hom}_{\text{Alg}}(H, k)$ be the set of algebra morphisms from H to the ground field k. Show:

(a) F is a group under the convolution product \ast where

\[g \ast f := m_k(g \otimes f)\Delta_H \]

(b) For $f \in F$ we have

\[f \circ S = f^{-1} \]

2. Homogeneous and Elementary Symmetric Functions

(1). Given that

\[h_n = S((-1)^ne_i) = -\sum_{i=1}^{n} (-1)^i h_{n-i}e_i \]

write h_i in terms of the e_i’s for $i = 1, \ldots, n$.

(2). Use the identity

\[\sum_{i=0}^{m} e_i t^i = \prod_{i=1}^{m} (1 + tx_i) \]

to write an expression for $e_i(x_1, \ldots, x_m)$.

- Give an expression for $h_i(x_1, \ldots, x_m)$ using (1) and (2). [Hint: Guess and prove].
- Define the algebra map

\[\omega : \text{Sym} \to \text{Sym} \]

such that $\omega(e_i) = h_i$.

- Prove that ω is an involution.
- Conclude that $\text{Sym} \cong \mathbb{Z}[h_1, h_2, \ldots]$.
– Compute $S(h_i)$.
– Compute $\Delta(h_i)$.

(5). Show the following:
 (a) $h_k(x_1, \ldots, x_n) = h_k(x_2, \ldots, x_n) + x_1h_{k-1}(x_1, \ldots, x_n)$.
 (b) $h_k(x_1, \ldots, x_n) \in \langle \text{Sym}_n^+ \rangle$.
 (c) Using the order $x_1 > \cdots > x_n$ show that $\text{LM}(h_k(x_k, \ldots, x_n)) = x_k^k$ where $\text{LM}(f)$ denotes the leading monomial of the polynomial f.

 [Note: Given two monomials $x_1^{a_1}x_2^{a_2} \cdots x_i^{a_i}$ and $x_1^{b_1}x_2^{b_2} \cdots x_k^{b_k}$, we say that $x_1^{a_1}x_2^{a_2} \cdots x_i^{a_i} \geq x_1^{b_1}x_2^{b_2} \cdots x_k^{b_k}$ whenever $(a_1, \ldots, a_i) \geq_{\text{lex}} (b_1, \ldots, b_k)$. The leading term $\text{LM}(f)$ is the maximum of the monomials in f under the order \geq.]

 (⋆) Show that the set $\{h_i(x_1, \ldots, x_n)\}_{i \in [n]}$ is a Groebner basis for $\langle \text{Sym}_n^+ \rangle$.

 Conclude that the dimension of the vector space $\mathbb{Z}[h_1, \ldots, h_k]/\langle \text{Sym}_n^+ \rangle$ is $n!$.