1. Explain why $n! \sim \left(\frac{n}{e}\right)^n$.
2. Deduce from the Stirling formula that 100! has 158 digits. (1000)!?
3. Find all alternating permutations $n = 5$.
4. Use Sloan to find T_{17}.
5. Prove that $T_n = $ number of labeled binary decreasing trees.
6. Explain why $T(z) = \sum_{n \geq 0} T_n \frac{z^n}{n!}$ is a solution of $\frac{dT(z)}{dz} = 1 + T(z)^2$.
7. Check that $T(z) = \tan(z)$.
8. Explain (prove) that for n odd,
 $$T_n = \left(\frac{n}{2}\right) T_{n-2} + \left(\frac{n}{4}\right) T_{n-4} - \cdots = (-1)^{\frac{n-1}{2}}.$$
9. (a) Show that $\tan(z) \sim \frac{8z}{\pi^2 - 4z^2}$.
 (b) Show that $\frac{T_n}{n!} \sim 2 \cdot \left(\frac{2}{\pi}\right)^{n+1}$.
10. Prove that the ordinary generating function $C(z) = \sum c_n z^n$ for binary trees on $n + 3$ vertices satisfies
 $$C(z) = 1 + C(z)^2.$$