1. Recall the notation and setup of the Plücker relations: let \([n] := \{1, 2, \ldots, n\}\) and \(\binom{[n]}{k} = \{ I \mid I \subset [n], |I| = k \}\). For a \(k \times n\) matrix \(A\) and \(I = \{i_1, \ldots, i_k\} \subset [n]\), let \(\Delta_I(A) = \det(k \times k \text{ submatrix in column set } I)\). Then the Plücker relations are: for any \(i_1, \ldots, i_k, j_1, \ldots, j_k \in [n]\) and \(r = 1, \ldots, k\):
\[
\Delta_{i_1, \ldots, i_k, j_1, \ldots, j_k} = \sum \Delta_{i_1', \ldots, i_k', j_1', \ldots, j_k'} \Delta_{j_1', \ldots, j_k'}\, \tag{0.1}
\]
where we sum over all indices \(i_1, \ldots, i_k\) and \(j_1', \ldots, j_k'\) obtained from \(i_1, \ldots, i_k\) and \(j_1, \ldots, j_k\) by switching \(i_{s_1}, i_{s_2}, \ldots, i_{s_r}\) (\(s_1 < s_2 < \ldots < s_r\)) with \(j_1, j_2, \ldots, j_r\).

Prove the Plücker relation.

2.
(a) Recall that the Fano plane is an example of a non-realizable matroid in \(\binom{[7]}{3}\) (it is illustrated in Figure 1).

Check that the Fano plane satisfies the Exchange Axiom and that it is non-realizable.

(b) Two other examples of non-realizable matroids are the Pappus matroid and the Desargues matroid (illustrated in Figures 2 3) which come from Pappus and Desargues theorems respectively. We require that the 3 points that are supposed to be collinear in Pappus/Desargues theorems are linearly independent in the corresponding Pappus/Desargues matroids.

Check that these are non-realizable matroids.

3. Let \(\lambda = (\lambda_1, \ldots, \lambda_k)\) be a Young diagram that fit inside the \(k \times n\) rectangle. Consider the subset \(S_\lambda\) of the Grassmannian \(\Gr(k, n)\) over the finite field \(\mathbb{F}_q\) that consists of elements that can
be represented by \(k \times n \) matrices \(A \) with 0s outside the shape \(\lambda \). For example, for \(n = 4 \) and \(k = 2 \), \(S_{(4,1)} \) is the subset of elements of \(\text{Gr}(2, 4) \) representable by matrices of the form \(\begin{pmatrix} \ast & \ast & \ast & \ast \\ \ast & 0 & 0 & 0 \end{pmatrix} \).

Find a combinatorial expression for the number of elements of \(S_{(2k, 2k-2, \ldots, 2)} \) (over \(\mathbb{F}_q \)). Show that it is a polynomial in \(q \).

4. **Recall the notation of matroid polytopes.** We denote by \(e_1, \ldots, e_n \) the coordinate vectors in \(\mathbb{R}^n \). Given \(I = \{i_1, \ldots, i_k\} \in \binom{[n]}{k} \) we denote by \(e_I \) the vector \(e_{i_1} + e_{i_2} + \cdots + e_{i_k} \). Then for any \(M \subseteq \binom{[n]}{k} \) we obtain the following convex polytope

\[
P_M = \text{conv}(e_I \mid I \in M) \subset \mathbb{R}^n,
\]

where \(\text{conv} \) means the convex hull. Note that \(P_M \subset \{x_1 + x_2 + \cdots + x_n = k\} \) so \(\dim P_M \leq n - 1 \). The polytope \(P_M \) is a **matroid polytope** if every edge of \(P_M \) is parallel to \(e_j - e_i \), i.e. edges are of the form \([e_I, e_J]\) where \(J = (I \setminus \{i\}) \cup \{j\} \).

Prove that \(P_M \) is a matroid polytope if and only if \(M \) satisfies the **Exchange Axiom**: For all \(I, J \in M \) and for all \(i \in I \) there exists a \(j \in J \) such that \((I \setminus \{i\}) \cup \{j\} \in M \).