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Before we start, I want to make it clear that this paper is mainly excerpts

from sources which are referenced at the end.

We will start off reviewing the basics of the Theory of Combinatorial Species.

Let B denote the category of finite sets where the morphisms are bijections.

Definition : A combinatorial species is a functor

F : B → B

With this, we can associate a finite set, U , with a finite set F [V ], which is the set

of F -structures of F on A. Since F is a functor, it maintains the structures on

the bijections as well. Let σ : U → V be a bijection. Then, F [σ] : F [U ]→ F [V ]

is also a bijection. Let τ : V → U be a bijection. Since F is a functor,

F [σ◦τ ] : F [σ]◦F [τ ] is also a bijection F [U ]→ F [V ]. Let 1U denote the identity

map on U. Then F [1U ] = 1F [U ] Some basic species are :

E which is defined by E[u] = {U}
X defined by X[U ] = U , of |U | = 1 , empty otherwise.

G of graphs

S of permutations

L of linear orderings

Let a ∈ F [U ] and b ∈ F [V ]. Let σ : U → V be a bijection. σ is said to be an

isomorphism of a to b if

b = σ(a) = F [σ](a)

For example we can consider the permutations of 4 letters. Let U = V =

{1, 2, 3, 4}. Let F [U ] be the permutations on our set U . Take σ : U → U where

1 7→ 1 2 7→ 3 3 7→ 4 and 4 7→ 2. Let a = (13)(24) b = (14)(32). Then, we see

that σ is an isomorphism.

Each species has a associated power series that helps describe the species.
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- F (X) :
∑∞
i=0 fn

xn

n! where fn is the number of F structures on the set of n

elements. This counts the number of labeled structures. We call this the gener-

ating series

- ˜F (X) :
∑∞
n≥0 f

xn

n! Here, f is the number of unlabeled structures. We call this

the type-generating series

- ZF (x1, x2, ...) =
∑
n≥0

1
n! (
∑
σ∈Sn fixF [σ]xσ1

1 xσ2
2 ...) We call this the cycle in-

dex series.

Some examples are:

L(x) = 1
1−x , L̃(x) = 1

1−x
E(x) = ex ,Ẽ(x) = 1

1−x
X(x) = x, 1̃(x) = x

G(x) =
∑
n≥0 2(n2)xn/n!

S(x) = 1
1−x , S̃(x) = π∞k=1

1
1−xk

When talking about equivalence of species, we are typically interested in

an isomorphism between species. Notice that L and E have the same type

generating series. They are not isomorphic as species. For two species to be

isomorphic we require there to exist a family of bijections αu : F [U ] → G[U ]

where ∀σ, σ is bijection

F [U ] G[U ]

F [V ] G[V ]

αu

F [σ] G[σ]

αv

such that the diagram above commutes.

This isomorphism will imply that all the associated series will be equal to

the corresponding associated series.

In class, we have gone over various operations on species. Namely: addi-

tion, multiplication,composition,and differentiation. These operations can be

extremely useful. For example, it may be more natural to view a species as a

sum of two species that are better understood. However, there are operations

we have not covered. These operations are a bit more complicated. Suppose

you had a species A and subspecies Ax, Ay and that A = Ax + Ay. It would

be nice if we could say A − Ax = Ay. It turns out this is possible, but it is

necessary that we deal with subspecies. The construction of the virtual species

mimics to the construction of the integers from the natural numbers. We define

V irt = (Spe× Spe)/ ∼.
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where ∼ is the equivalence relation defined by

(F,G) ∼ (H,K)

iff F + K ∼= G + H. To verify that ∼ is an equivalence relation, we will

prove the additive cancellation property of species. This is exercise 3 and

4 in Combinatorial Species and Tree-like Structures. So, we will prove that

F +G = G+H =⇒ F = H.

Proof. We have that F +H = G+H. Therefore, there exists an isomorphism,

α : F + H → G + H. We will construct an isomorphism β : F → G. We

consider a family of bijections, βu(s) = (αu)k(s), where k is the smallest integer

≥ 0 such that (αu)k(s) ∈ G[U ]. Fix U , and let s ∈ F [u]. We know that

αu(s) ∈ G[U ] ∪ H[U ]. If αu(s) ∈ G[U ], we stop. If au(s) ∈ H[U ], we can

apply the bijection again. We proceed iteratively. Certainly the process must

end as αu is a bijection and we are dealing with finite sets. Therefore, βu is a

well-defined bijection. Now we leverage the fact that α was an isomorphism. So

that ∀s ∈ F [U ], the diagram :

F [U ] G[U ]

F [V ] G[V ]

βu

F [σ] G[σ]

βv

commutes. The argument holds for all finite sets U so that β is an isomorphism.

We conclude the cancellation property holds.

We typically write [(F,G)]∼ as F −G. Now, we will see that ∼ is an equiv-

alence relation. The reflexive and symmetric properties are easily verified. Let

(F1, G1) ∼ (F2, G2) and (F2, G2) ∼ (F3, G3). Then, we have that F1 + G2 =

G1 +F2 and F2 +G3 = G2 +F3. This implies that F1 +G2 +F3 = G1 +F2 +F3

substituting, we have F1+F2+G3 = G1+F2+G3. By the cancellation property,

we have that F1 + G3 = G1 + F3 so that (F1, G1) ∼ (F3, G3). Thus, ∼ is an

equivalence relation.

The associated series for Virtual Species turns out to be as expected.

(F −G)(x) = F (x)−G(x)

(F −G) ˜(x) = F ˜(x)−G ˜(x)

ZF−G(x1, x2, ...) = ZF (x1, x2, ...)− ZG(x1, x2, ...)
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To see the usefulness of Virtual Species, we consider two examples.

Let G denote the species of graph. Let Gc and Gd represent connected and

disconnected graphs, respectively. We know that G = Gc +Gd. Since we are in

a setting where Gc and Gd are subspecies, we can deduce G−Gc = Gd, which

is to be expected.

A more interesting example: We consider the species E. Now there is no

classical species that is the multiplicative inverse of E. However, we know that

E =
∑∞
i=0Ei. So decomposing we have that E = 1 +

∑∞
i=1Ei = 1 + E+.

Therefore,

E−1 = (1 + E+)−1 =

∞∑
k=0

(−1 ∗ E+)k

We attain the following generating series :

E−1(x) = e−x

E−1 ˜(x) = 1− x

which agrees with one’s intuition.

Now we will move into Γ species. In this setting, we will let a group, Γ act

on unlabeled structures of a species. More formally put, ∀γ ∈ Γ, and for every

bijection σ

X F [X] F [X]

Y F [Y ] F [Y ]

σ

F

F (σ)

γX

σ

F γY

the diagram above commutes.

We define the Γ - cycle index for a given element γ ∈ Γ :

ZΓ
F (γ) =

∑
n≥0

1

n!

∑
σ∈ Sn

fix(γ ∗ F [σ])xσ

note, xσ is just the product xσ1
1 xσ2

2 ...xσnn . The coefficients of the above series
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count the number of fixed points of the combined action of a permutation and a

group element. This is different than what we had before as we did not have a

group action. Therefore, we can uncover the normal cycle index series by letting

Γ = {e}, the trivial group. Definitions:

ZΓ
F+G(γ) = ZΓ

F (γ) + ZΓ
G(γ)

ZΓ
F∗G(γ) = ZΓ

F (γ) ∗ ZΓ
G(γ)

We can also define composition of two Γ species F and G to be :

(F ◦G)[A] =
∏

π∈P (A)

(F [π]×
∏
B∈π

G[B])

Now we will venture into an example of Γ species. Let G be a bicolored

graph (each vertex is assigned a color black, or white) and that each edge con-

nects vertices of different colors. So, it is natural to let S2 act on the species

BC(bicolored graphs), where the transposition reverses the coloring of the ver-

tices. We will compute the cycle index series for our Γ Species. So, let γ = (e),

the identity permutation. ∀n > 0and each permutation π ∈ Sn, we must count

bicolored graphs on [n] for which π is a color-preserving automorphism(fixed

point). We will disregard empty graphs and define BC[∅] = ∅. Let λ denote the

cycle type of a permutation. In other words, λ is a multiset {1k1 , 2k2 , ..., nkn}
where

∑n
i=1 ki = n. We will count bicolored graphs for which a chosen permu-

tation π of cycle type λ is a color-preserving automorphism. For every cycle of

a permutation, there is a corresponding subset of strictly white or strictly black

vertices of (exclusive or). To create a bicolored graph, we draw bicolored edges

into a specific vertex set. Since π is an automorphism of the graph, we will also

draw all other edges in the orbit. Going forward, we will count the edge orbits

for a fixed coloring, then we will consider permutations of such colorings. Since

these cycle types correspond to vertex subsets, an edge connecting two cycles of

lengths m and n have a corresponding orbit length of of lcm(m,n). Therefore,

the total number of orbits between the two cycles is mn/lcm(m,n) = gcd(m,n).

So, to count the number of orbits for a fixed coloring, we take the sum over the

multisets of all cycle lengths m and n where m corresponds to white cycles and n

corresponds to black cycles in π. We can construct any possible bicolored graph

that is fixed by π by picking a subset of cycles. Thus, there are
∏

2gcd(m,n)

graphs for a fixed coloring. There may be colorings of a graph that can allow
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for a permutation of a specified cycle type. So, we will split our multi-set λ into

a union of white cycles and black cycles. λ = w ∪ b. Therefore the number of

graphs fixed by a permutation of cycle type λ , fix(w, b) =
∏
i∈w,j∈b 2gcd(i,j)

This product is not taking into account the fact the the cycles are distinguish-

able(by color). To adjust for this, we decompose λ into i- cycles, λi. So, for each

i cycle there are λiCwi = λi
wi!bi!

. Since this is done for each i cycle, we multiply

to attain the total number of decompositions:
∏
i

λi
wi!bi!

= zλ/zwzb. Therefore,

for a permutation of a type λ,

fix(λ) =
zλ
zwzb

∏
i,j

2gcd(wi,bj)

Note: zλ =
∏
k k

λkλk!

So, in accordance to the cycle -index formula, we obtain

ZS2

BC(e) =
∑
n>0

∑
w∪b

xw∪b
zwzb

∏
i,j

2gcd(wi,bj)

We could have arrived to this using the Poly Enumeration Theorem covered in

class. Both methods are similar.

If we want to count the number of colorings fixed by a permutation and a

swap of vertex colors, Γ-Species will surely help.

We look at our cycle index series for the transposition τ . We consider the

cycles of the set [n] induced by a permutation π ∈ Sn. We will count the number

of bicolored graphs on [n] in which τ ∗ π is an automorphism. Here, τ is our

transposition in S2 that reverses the colors. Our cycle of vertices must alternate

colors. Therefore, our cycles are even. From here, edges can be connected

within a single cycle or between two cycles. We will count the number of these

edge orbits. So, consider a cycle of length 2n. There are n2 possible edges as

there are n options for a white vertex and n options for black vertex. When n is

odd, opposite vertices have the opposite color. This allows us to have an edge of

length n, which corresponds to exactly one orbit of length n. If the edge is not of

length n, then the orbit length is 2n(you will hit every vertex). Since there are

n2 possible edges, our orbit length is 2n, and there are n cases corresponding to

orbits of length n, the number of these orbits is n2−n
2n .In total, we have n+1

2 orbits

when n is odd. If n is even, every orbit will be of length 2n. So, the number of

orbits is just n
2 . Now, we will count the number of edges when connecting two

cycles of lengths 2m and 2n. The number of possible edges is 2mn(m white n
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black or m black n white). Each has orbit length lcm(2m, 2n) = 2lcm(m,n).

The total number of orbits is 2mn
lcm(m,n) = gcd(m,n). So, for a fixed coloring of

a permutation of cycle type 2λ(corresponds to two copies of a partition λ), the

number of orbits is
∑
i

⌈
λi
2

⌉
+
∑
i<j gcd(λi, λj). Here, we use the ceiling function

so we do not have separate cases of odd and even. Therefore, the total number

of possible graphs for a fixed coloring is

∏
i

2

⌈
λi
2

⌉∏
i>j

2gcd(λi,λj)

Given a partition 2λ with l(λ) cycles, there are 2l(λ) colorings where each cycle

alternates colors. So, the number of total graphs for all permutations π of cycle

type 2λ is

2l(λ)
∏
i

2

⌈
λi
2

⌉∏
i>j

2gcd(λi,λj)

we have :

ZS2

BC(τ) =
∑
n>0

∑
λ

2l(λ)x2λ

z2λ

∏
i

2

⌈
λi
2

⌉∏
i>j

2gcd(λi,λj)

We end on a note about Gamma Species. While the examples, are long

and technical,Gamma species comes to the rescue when it comes to graphs.

The Theory of Gamma Species gave solutions to unsolved problems in graph

enumeration.
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